The Beauty of Everyday Mathematics by Norbert Herrmann

By Norbert Herrmann

Think that you’ve ultimately came across a automobile parking space after a protracted and harrowing seek, yet at the moment are encountering a few trouble in attempting to input this house. Wouldn’t it's nice for those who knew a formulation that allowed you to go into the distance without problems? Are you pissed off simply because your soda can doesn’t stay upright in the course of a picnic? do you want to grasp why a reflect swaps correct and left, yet now not best and backside? Are you trying to find a mathematical speech to toast your mother-in-law’s eighty fifth birthday? Or do you need to offer your middle away mathematically? Dr. Norbert Herrmann offers fun and pleasing options to those and lots of different difficulties that we stumble upon in daily occasions. “A booklet for lecturers, scholars of arithmetic, and anyone who likes strange and fun calculations.”  

Translated from German by way of Martina Lohmann-Hinner.

Show description

By Norbert Herrmann

Think that you’ve ultimately came across a automobile parking space after a protracted and harrowing seek, yet at the moment are encountering a few trouble in attempting to input this house. Wouldn’t it's nice for those who knew a formulation that allowed you to go into the distance without problems? Are you pissed off simply because your soda can doesn’t stay upright in the course of a picnic? do you want to grasp why a reflect swaps correct and left, yet now not best and backside? Are you trying to find a mathematical speech to toast your mother-in-law’s eighty fifth birthday? Or do you need to offer your middle away mathematically? Dr. Norbert Herrmann offers fun and pleasing options to those and lots of different difficulties that we stumble upon in daily occasions. “A booklet for lecturers, scholars of arithmetic, and anyone who likes strange and fun calculations.”  

Translated from German by way of Martina Lohmann-Hinner.

Show description

Read Online or Download The Beauty of Everyday Mathematics PDF

Best mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This publication presents a self-contained remedy of 2 of the most difficulties of multiparameter spectral idea: the life of eigenvalues and the growth in sequence of eigenfunctions. the implications are first got in summary Hilbert areas after which utilized to indispensable operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation thought of the advanced precise linear group)
* five Léo Kaloujnine Sur los angeles constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, countless workforce theory)
* 6. Pierre Samuel los angeles théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et los angeles travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein procedure linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für method von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de l. a. théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes maintains d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; advent à l. a. géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes maintains d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : type, size, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse thought, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de strategies des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de sessions neighborhood selon G. P. Hochschild (local category box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de l. a. théorie locale des corps de sessions (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, general sort)

Extra info for The Beauty of Everyday Mathematics

Example text

You back up until the midpoint of your car, between the four tires, is parallel with the rear end of the car in front, A. (Later, we’ll see that this can be improved. ) 3. Now, you have to turn the steering wheel until it doesn’t turn anymore, so that you can drive into the space. In so doing, you have to drive along a circular arc with an included angle α. 4. Then, you turn the front wheel as far as possible in the opposite direction in order to be once again parallel to the street and drive in an oppositely curved circular arc with the same included angle α.

5. Finally, you drive forward a bit so as not to wedge in the car B behind. 3 Rebecca Hoyle’s Formula 43 The Parallel Parking Problem 1. How big does the parking space (of length g) have to be so that you can get into it? 2. At what distance p does this maneuver begin? 3. What circular arc do you need to follow? In other words, how big is the angle α? 3 Rebecca Hoyle’s Formula In mid April of 2003, the following “formula for parking” appeared around the world in many online newspapers (for typesetting reasons, it’s written here on two lines): p= r − w/2, g) − w + 2r + b, f ) − w + 2r − f g max((r + w/2)2 + f 2 , (r + w/2)2 + b2 )£ min((2r)2 , (r + w/2 + k)2 ) Internet users who happened to find this formula were confused because the formula did not make much sense.

11 The Formula for a 45 degree Maneuver 53 Curbstone Our car α ✙ r y ✲ p x Car B r Car A ✸ Our car b d α Curbstone f Fig. 6 The starting and end positions of a parallel-parking maneuver. Our car is initially parallel to the car in front at a distance p, with the rear axle in line with the rear bumper of the car in front. It then moves along two circular arcs with the same angle α into the parking space, all the way to the end position. 11 The Formula for a 45 degree Maneuver In some driver education classes, they tell you to drive an eighth of a circle; this corresponds to an angle α = 45◦ .

Download PDF sample

Rated 4.48 of 5 – based on 47 votes