Stability of the Turnpike Phenomenon in Discrete-Time by Alexander J. Zaslavski

By Alexander J. Zaslavski

The constitution of approximate suggestions of self sufficient discrete-time optimum keep an eye on difficulties and person turnpike effects for optimum keep an eye on difficulties with out convexity (concavity) assumptions are tested during this publication. specifically, the ebook specializes in the homes of approximate strategies that are self sufficient of the size of the period, for all sufficiently huge periods; those effects observe to the so-called turnpike estate of the optimum keep watch over difficulties. via encompassing the so-called turnpike estate the approximate recommendations of the problemsare decided essentially by means of the target functionality and are essentially self sufficient of the alternative of period and endpoint stipulations, other than in areas with regards to the endpoints. This bookalso explores the turnpike phenomenon for 2 huge periods of self sufficient optimum keep an eye on difficulties. it's illustrated that the turnpike phenomenon is sturdy for an optimum keep watch over challenge if the corresponding limitless horizon optimum keep watch over challenge possesses an asymptotic turnpike estate. If an optimum keep an eye on challenge belonging to the 1st type possesses the turnpike estate, then the turnpike is a singleton (unit set). the steadiness of the turnpike estate less than small perturbations of an aim functionality and of a constraint map is validated. For the second one category of difficulties the place the turnpike phenomenon isn't really inevitably a singleton the soundness of the turnpike estate below small perturbations of an aim functionality is tested. Containing strategies of inauspicious difficulties in optimum controland featuring new techniques, options and strategies this ebook is of curiosity formathematiciansworking in optimum keep an eye on and the calculus of variations.It can even be important in guidance classes for graduate students."

Show description

By Alexander J. Zaslavski

The constitution of approximate suggestions of self sufficient discrete-time optimum keep an eye on difficulties and person turnpike effects for optimum keep an eye on difficulties with out convexity (concavity) assumptions are tested during this publication. specifically, the ebook specializes in the homes of approximate strategies that are self sufficient of the size of the period, for all sufficiently huge periods; those effects observe to the so-called turnpike estate of the optimum keep watch over difficulties. via encompassing the so-called turnpike estate the approximate recommendations of the problemsare decided essentially by means of the target functionality and are essentially self sufficient of the alternative of period and endpoint stipulations, other than in areas with regards to the endpoints. This bookalso explores the turnpike phenomenon for 2 huge periods of self sufficient optimum keep an eye on difficulties. it's illustrated that the turnpike phenomenon is sturdy for an optimum keep watch over challenge if the corresponding limitless horizon optimum keep watch over challenge possesses an asymptotic turnpike estate. If an optimum keep an eye on challenge belonging to the 1st type possesses the turnpike estate, then the turnpike is a singleton (unit set). the steadiness of the turnpike estate less than small perturbations of an aim functionality and of a constraint map is validated. For the second one category of difficulties the place the turnpike phenomenon isn't really inevitably a singleton the soundness of the turnpike estate below small perturbations of an aim functionality is tested. Containing strategies of inauspicious difficulties in optimum controland featuring new techniques, options and strategies this ebook is of curiosity formathematiciansworking in optimum keep an eye on and the calculus of variations.It can even be important in guidance classes for graduate students."

Show description

Read Online or Download Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems PDF

Best mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This publication presents a self-contained therapy of 2 of the most difficulties of multiparameter spectral thought: the lifestyles of eigenvalues and the growth in sequence of eigenfunctions. the implications are first received in summary Hilbert areas after which utilized to crucial operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation idea of the complicated unique linear group)
* five Léo Kaloujnine Sur l. a. constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, endless workforce theory)
* 6. Pierre Samuel l. a. théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et l. a. travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein method linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : los angeles transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für approach von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de los angeles théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes maintains d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; creation à los angeles géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes keeps d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : category, size, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized strength theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse idea, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de options des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de periods neighborhood selon G. P. Hochschild (local classification box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de los angeles théorie locale des corps de periods (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, basic kind)

Additional info for Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

Sample text

58). 59), and property (P6), there exists an (Ω)-program {yt }Tt=0 such that ρ(xt , yt ) ≤ δ/4 for all t = 0, . . 60) and T −1 T −1 v(yt , yt+1 ) ≥ t=0 ut (xt , xt+1 ) − δ/4. 61), T −1 −1 −1 v(yt , yt+1 ) ≥ σ {ut }Tt=0 , {Ωt }Tt=0 , 0, T , x0 , xT − δ − δ/4. 62) t=0 Set x˜0 = x0 , x˜t = x¯ for all integers t satisfying 1 ≤ i < T , x˜T = xT . 63) −1 )-program. 63), and property (P5) that ¯ x)| ¯ ≤ γ /4, i = 0, T − 1. 63), T −1 T −1 v(yt , yt+1 ) ≥ ut (x˜t , x˜t+1 ) − δ − δ/4 t=0 t=0 T −1 ≥ −δ − δ/4 + v(x˜t , x˜t+1 ) t=0 − T max{ ut − v : t = 0, .

105) ut ∈ M, t = 0, . . , T − 1 satisfy ut − v ≤ δ, t = 0, . . 106) −1 and that an ({Ωt }Tt=0 )-program {xt }Tt=0 satisfies 1 −1 x0 ∈ Y¯ ({Ωt }lt=0 , 0, l1 ). 3, −1 −1 , {Ωt }Tt=0 , 0, T , x0 ) ≤ σ ({ut }Tt=0 T −1 ut (xt , xt+1 ) + δ. 3, we obtain a finite sequence of integer Si , i = 0, . . , q such that 0 ≤ S0 ≤ L, T − L < Sq ≤ T , 1 ≤ Si+1 − Si ≤ L, i = 0, . . , q − 1, ¯ ≤ γ , i = 0, . . , q. ρ(xSi , x) ¯ ≤ δ, we may assume that S0 = 0 and if ρ(xT , x) ¯ ≤ δ, we may assume If ρ(x0 , x) that Sq = T .

L} ≤ /4. 41) this implies that ¯ : t = 1, . . , T } ≤ /2. 13 is proved. 14 For each natural number T , σ (v, T , x, ¯ x) ¯ = T v(x, ¯ x). ¯ Proof Let T be a natural number. Clearly, σ (v, T , x, ¯ x) ¯ ≥ T v(x, ¯ x). ¯ Assume that an (Ω)-program {yt }Tt=0 satisfies y0 = x, ¯ yT = x. 44) For all integers i > T define yi ∈ X such that yi+T = yi for all integers i ≥ 0. 45) It is clear that {yt }∞ t=0 is an (Ω)-program. 45) and assumption (A2), for each natural number k, kT −1 T kv(x, ¯ x) ¯ + c¯ ≥ T −1 v(yt , yt+1 ) = k t=0 and v(yt , yt+1 ) t=0 T −1 k(−T v(x, ¯ x) ¯ + v(yt , yt+1 )) ≤ c¯ t=0 for all natural numbers k.

Download PDF sample

Rated 4.21 of 5 – based on 13 votes