Springer-Handbuch der Mathematik I: Begründet von I.N. by Eberhard Zeidler

By Eberhard Zeidler

Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl  besonders an Studierende richtet. Teil I des Springer-Handbuchs enthält neben dem einführenden Kapitel und dem Kapitel 1 des Springer-Taschenbuchs zusätzliches fabric zur höheren komplexen Funktionentheorie und zur allgemeinen Theorie der partiellen Differentialgleichungen.​

Show description

By Eberhard Zeidler

Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl  besonders an Studierende richtet. Teil I des Springer-Handbuchs enthält neben dem einführenden Kapitel und dem Kapitel 1 des Springer-Taschenbuchs zusätzliches fabric zur höheren komplexen Funktionentheorie und zur allgemeinen Theorie der partiellen Differentialgleichungen.​

Show description

Read or Download Springer-Handbuch der Mathematik I: Begründet von I.N. Bronstein und K.A. Semendjaew Weitergeführt von G. Grosche, V. Ziegler und D. Ziegler Herausgegeben von E. Zeidler PDF

Similar mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This publication presents a self-contained remedy of 2 of the most difficulties of multiparameter spectral idea: the lifestyles of eigenvalues and the growth in sequence of eigenfunctions. the implications are first received in summary Hilbert areas after which utilized to vital operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation thought of the advanced distinct linear group)
* five Léo Kaloujnine Sur los angeles constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, countless workforce theory)
* 6. Pierre Samuel los angeles théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et los angeles travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein approach linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für method von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de l. a. théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes keeps d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; creation à los angeles géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes maintains d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized strength theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : type, size, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse conception, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de strategies des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de sessions neighborhood selon G. P. Hochschild (local category box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de l. a. théorie locale des corps de periods (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, common sort)

Extra resources for Springer-Handbuch der Mathematik I: Begründet von I.N. Bronstein und K.A. Semendjaew Weitergeführt von G. Grosche, V. Ziegler und D. Ziegler Herausgegeben von E. Zeidler

Example text

P! ( p + 1) ! p! 2! ( p − 1)! 1! Bernoullische Zahlen und unendliche Reihen: 2π gilt: ex Für alle komplexen Zahlen x mit 0 < | x | < ∞ x B B B B = 0 + 1 x + 2 x2 + . . = ∑ k x k . −1 0! 1! 2! k! 1 Grundformeln der Elementarmathematik 37 Ferner treten die Bernoullischen Zahlen bei der Potenzreihenentwicklung der Funktionen tan x , cot x , tanh x , coth x , ln | tan x | , ln | sin x | , ln cos x 1 1 , , sin x sinh x auf (vgl. 2). Die Bernoullischen Zahlen spielen auch bei der Summation der Inversen von Potenzen natürlicher Zahlen eine wichtige Rolle.

Xn gültige Dreiecksungleichung n ∑ xk k =1 ≤ n ∑ | xk | . k =1 Die Bernoullische Ungleichung: Für alle reellen Zahlen x ≥ −1 und n = 1, 2, . . gilt (1 + x )n ≥ 1 + nx . Die binomische Ungleichung: | ab| ≤ 13 1 2 a + b2 2 für alle a, b ∈ R . Die Aussage „für alle a ∈ R “ bedeutet, dass die Formel für alle reellen Zahlen a gilt. Ferner bedeutet „für alle z ∈ C “ die Gültigkeit der Beziehung für alle komplexen Zahlen. Man beachte, dass jede reelle Zahl auch eine komplexe Zahl ist. 1. 1 Grundformeln der Elementarmathematik 39 Die Ungleichung für Mittelwerte: Für alle positiven reellen Zahlen c und d gilt: 2 1 1 + c d ≤ √ cd ≤ c+d ≤ 2 c2 + d 2 .

Youngschen Ungleichung xy ≤ + p q wobei sich q aus der Gleichung Standardliteratur: Eine Fülle von weiteren Ungleichungen findet man in den beiden Standardwerken [Hardy et al. 1978] und [Beckenbach und Bellman 1983]. 12 Anwendung auf die Planetenbewegung – der Triumph der Mathematik im Weltall Man kann dasjenige, was man besitzt, nicht rein erkennen, bis man das, was andere vor uns besessen, zu erkennen weiß. Johann Wolfgang von Goethe (1749–1832) Die Ergebnisse der vorangegangenen Abschnitte rechnet man heute mit Recht zur Elementarmathematik.

Download PDF sample

Rated 4.56 of 5 – based on 40 votes