Séminaire Bourbaki, Vol. 7, 1961-1962, Exp. 223-240 by N. Bourbaki

By N. Bourbaki

Desk of Contents

* 223 Adrien Douady, Cycles analytiques, d'après Atiyah et Hirzebruch (analytic cycles)
* 224 cancelled
* 225 Jean-Pierre Kahane, Travaux de Beurling et Malliavin (harmonic analysis)
* 226 Bernard Morin, Un contre-example de Milnor à los angeles Hauptvermutung (Hauptvermutung)
* 227 André Néron, Modèles p-minimaux des variétés abéliennes (Néron models)
* 228 Pierre Samuel, Invariants arithmétiques des courbes de style 2, d'après Igusa (invariant theory)
* 229 François Bruhat, Intégration p-adique, d'après Tomas (p-adic integration)
* 230 Jean Cerf, Travaux de Smale sur l. a. constitution des variétés (smooth manifolds)
* 231 Pierre Eymard, Homomorphismes des algèbres de groupe, d'après Paul J. Cohen (Paul Cohen's theorem on harmonic analysis)
* 232 Alexander Grothendieck, approach de descente et théorèmes d'existence en géométrie algébrique. V : Les schémas de Picard : Théorèmes d'existence (Picard schemes)
* 233 Bernard Morin, Champs de vecteurs sur les sphères, d'après J. P. Adams (vector fields on spheres)
* 234 François Norguet, Théorèmes de finitude pour l. a. cohomologie des espaces complexes, d'après A. Andreotti et H. Grauert (finiteness theorems)
* 235 Michel Demazure, Sous-groupes arithmétiques des groupes algébriques linéaires, d'après Borel et Harish-Chandra (arithmetic groups)
* 236 Alexander Grothendieck, method de descente et théorèmes d'existence en géométrie algébrique. VI : Les schémas de Picard : Propriétés générales (see 232)
* 237 Serge Lang, Fonctions implicites et plongements riemanniens, d'après Nash et Moser (Nash embedding theorem, Nash–Moser theorem)
* 238 Laurent Schwartz, Sous-espaces hilbertiens et antinoyaux associés (Hilbert space)
* 239 André Weil, Un théorème fondamental de Chern en géométrie riemannienne (differential geometry)
* 240 Michel Zisman, Travaux de Borel-Haefliger-Moore (homology idea)

Show description

By N. Bourbaki

Desk of Contents

* 223 Adrien Douady, Cycles analytiques, d'après Atiyah et Hirzebruch (analytic cycles)
* 224 cancelled
* 225 Jean-Pierre Kahane, Travaux de Beurling et Malliavin (harmonic analysis)
* 226 Bernard Morin, Un contre-example de Milnor à los angeles Hauptvermutung (Hauptvermutung)
* 227 André Néron, Modèles p-minimaux des variétés abéliennes (Néron models)
* 228 Pierre Samuel, Invariants arithmétiques des courbes de style 2, d'après Igusa (invariant theory)
* 229 François Bruhat, Intégration p-adique, d'après Tomas (p-adic integration)
* 230 Jean Cerf, Travaux de Smale sur l. a. constitution des variétés (smooth manifolds)
* 231 Pierre Eymard, Homomorphismes des algèbres de groupe, d'après Paul J. Cohen (Paul Cohen's theorem on harmonic analysis)
* 232 Alexander Grothendieck, approach de descente et théorèmes d'existence en géométrie algébrique. V : Les schémas de Picard : Théorèmes d'existence (Picard schemes)
* 233 Bernard Morin, Champs de vecteurs sur les sphères, d'après J. P. Adams (vector fields on spheres)
* 234 François Norguet, Théorèmes de finitude pour l. a. cohomologie des espaces complexes, d'après A. Andreotti et H. Grauert (finiteness theorems)
* 235 Michel Demazure, Sous-groupes arithmétiques des groupes algébriques linéaires, d'après Borel et Harish-Chandra (arithmetic groups)
* 236 Alexander Grothendieck, method de descente et théorèmes d'existence en géométrie algébrique. VI : Les schémas de Picard : Propriétés générales (see 232)
* 237 Serge Lang, Fonctions implicites et plongements riemanniens, d'après Nash et Moser (Nash embedding theorem, Nash–Moser theorem)
* 238 Laurent Schwartz, Sous-espaces hilbertiens et antinoyaux associés (Hilbert space)
* 239 André Weil, Un théorème fondamental de Chern en géométrie riemannienne (differential geometry)
* 240 Michel Zisman, Travaux de Borel-Haefliger-Moore (homology idea)

Show description

Read or Download Séminaire Bourbaki, Vol. 7, 1961-1962, Exp. 223-240 PDF

Similar mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This publication offers a self-contained remedy of 2 of the most difficulties of multiparameter spectral concept: the lifestyles of eigenvalues and the growth in sequence of eigenfunctions. the consequences are first acquired in summary Hilbert areas after which utilized to quintessential operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation conception of the complicated exact linear group)
* five Léo Kaloujnine Sur l. a. constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, limitless staff theory)
* 6. Pierre Samuel los angeles théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et l. a. travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein approach linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für procedure von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de los angeles théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes maintains d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; creation à los angeles géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de l. a. croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes maintains d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : type, measurement, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse thought, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de strategies des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de periods neighborhood selon G. P. Hochschild (local classification box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de los angeles théorie locale des corps de periods (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, common type)

Additional info for Séminaire Bourbaki, Vol. 7, 1961-1962, Exp. 223-240

Sample text

2° Il existe à utilisant le lemme de deux conditions suivantes : est x° Hensell et les propriétés élémentaires des x ° est simple sur V° si et seulement s’il satis- en Soient V x et W que x° = deux variétés affines définies p(x) (i. sur kJ e. on peut et soit c~ : remonter V -r W application rationnelle, définie sur k. Nous dirons que p est p-morphique de p en un point x° de Supp VO si chacune des fonctions coordonnées est p-morphique en ce point. Le point yo ayant pour coordonnées les y. et est noté 03C6o(xo) .

Mension q. x(K) désigne H*(K , 6) = 0 , la et en ils sont définis v’q â q vq , q, X(B) autre base de où B q = 0 ou au bien que vq dépendent signe près. D’autre part, /B vo (m~ a ~ ~ ... ~ r) la s (a) près. sont b , de on multipliés du faisceau sont déterminés à la 6 . les (mt j = 0 lequel sur pris d’elles, on a chacune change les chemins par sur 8 . Or parce que , d’ou le lemme. de l’ordre dans si v’ est le nombre des cellules chaque dimension et de l’orientation choisie l’homomorphisme caractéristique i une caractéristique d’Euler-Poincaré il faut que produits extérieurs forme m’r le déterminant de la base = suite REMARQUE.

On dit qu’une application f d’un com~plexe ~ dans un complexe L est un isomorphisme, si f est un homéomorphisme des espaces sous-jacents, et si f applique les q-squelettes de K1 sur les squelettes de senties K~ pour tout entier Un des q . , sous-complexe cellulaire de squelettes Si et K1 K est réunion une pour tout entier gi K de cellules de munie q. sont deux K2 complexes cellulaires de equelettes respectifs appelle complexe-produit de 8I et de g- l’espace x des squelettes U on r+s=q Toute q-cellule e r-cellule de K1 , et On dit qu’une K cellulaire que est une Toute subdivision gt On dit que K Lorsque est K IL K2 ez une s-cellule de application chaque cellule de subdivision de de f d’un K’ dans une K , d’ un avec f est n gi si lorsqu’il n’a où e1 est une r + s = q .

Download PDF sample

Rated 4.84 of 5 – based on 47 votes