New Trends in the Theory of Hyperbolic Equations by Editors Reissig M., Schulze B.

By Editors Reissig M., Schulze B.

Show description

By Editors Reissig M., Schulze B.

Show description

Read Online or Download New Trends in the Theory of Hyperbolic Equations PDF

Best mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This booklet offers a self-contained therapy of 2 of the most difficulties of multiparameter spectral thought: the life of eigenvalues and the growth in sequence of eigenfunctions. the consequences are first got in summary Hilbert areas after which utilized to crucial operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation idea of the advanced exact linear group)
* five Léo Kaloujnine Sur l. a. constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, endless workforce theory)
* 6. Pierre Samuel los angeles théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et l. a. journey des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein method linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für process von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de l. a. théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes keeps d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; advent à l. a. géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes keeps d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : category, measurement, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized strength theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse thought, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de suggestions des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de periods neighborhood selon G. P. Hochschild (local category box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de l. a. théorie locale des corps de sessions (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, general kind)

Extra resources for New Trends in the Theory of Hyperbolic Equations

Example text

Sectorial Operators 21 holds for all 0 = λ ∈ C. In particular, M (A−1 , ω ) ≤ 1 + M (A, ω ) for all ω ∈ (ω, π). c) Let n ∈ N and x ∈ X. Then one has x ∈ D(A) x ∈ R(A) ⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒ limt→∞ tn (t + A)−n x = x limt→∞ An (t + A)−n x = 0, and limt→0 An (t + A)−n x = x limt→0 tn (t + A)−n x = 0. d) We have N(A) ∩ R(A) = 0. If R(A) = X, then A is injective. e) The identity N(An ) = N(A) holds for all n ∈ N. f) The family of operators (A + δ)δ≥0 is uniformly sectorial of angle ω. Indeed, M (A + δ, ω ) ≤ c(ω )M (A, ω ) (δ > 0, ω ∈ (ω, π)) where c(ω ) = (sin ω )−1 if ω ∈ (0, π/2] and c(ω ) = 1 if ω ∈ [π/2, π).

As a matter of fact, the rule as it stands does not make sense unless we require some additional hypotheses. Basically, we need that A is sectorial, g(A) is defined and also sectorial, and g maps a sector into another sector. More precisely, we require the following: 1) A ∈ Sect(ω). 2) g ∈ M[Sω ]A and g(A) ∈ Sect(ω ). 3) For every ϕ ∈ (ω , π) there is ϕ ∈ (ω, π) with g ∈ M(Sϕ ) and g(Sϕ ) ⊂ Sϕ . Under these requirements obviously g(Sω ) ⊂ Sω . 2. (Composition Rule) Let the operator A and the function g satisfy the conditions 1), 2), and 3) above.

The Functional Calculus for Sectorial Operators −α Analogously, |g(z)| ≤ (C/α) |z| . This shows not only that g, h are well defined, but also that h behaves well at 0 and g behaves well at ∞. By Morera’s theorem, g and h are holomorphic. The function ∞ c(z) := ψ(sz) 0 ds s is constant on (0, ∞) (by change of variables) hence on the whole sector Sϕ (by holomorphy). Thus we can write h − c = −g thereby showing that g, h ∈ E(Sϕ ) and g(0) = h(∞) = c. 3 The Natural Functional Calculus In this section A denotes always a sectorial operator of angle ω on a Banach space X.

Download PDF sample

Rated 4.71 of 5 – based on 32 votes