Manifolds with Cusps of Rank One: Spectral Theory and by Werner Muller

By Werner Muller

The manifolds investigated during this monograph are generalizations of (XX)-rank one in the community symmetric areas. within the first a part of the publication the writer develops spectral thought for the differential Laplacian operator linked to the so-called generalized Dirac operators on manifolds with cusps of rank one. This comprises the case of spinor Laplacians on (XX)-rank one in the community symmetric areas. The time-dependent method of scattering concept is taken to derive the most effects concerning the spectral answer of those operators. the second one a part of the e-book bargains with the derivation of an index formulation for generalized Dirac operators on manifolds with cusps of rank one. This index formulation is used to turn out a conjecture of Hirzebruch about the relation of signature defects of cusps of Hilbert modular types and designated values of L-series. This booklet is meant for readers operating within the box of automorphic kinds and research on non-compact Riemannian manifolds, and assumes an information of PDE, scattering idea and harmonic research on semisimple Lie teams.

Show description

By Werner Muller

The manifolds investigated during this monograph are generalizations of (XX)-rank one in the community symmetric areas. within the first a part of the publication the writer develops spectral thought for the differential Laplacian operator linked to the so-called generalized Dirac operators on manifolds with cusps of rank one. This comprises the case of spinor Laplacians on (XX)-rank one in the community symmetric areas. The time-dependent method of scattering concept is taken to derive the most effects concerning the spectral answer of those operators. the second one a part of the e-book bargains with the derivation of an index formulation for generalized Dirac operators on manifolds with cusps of rank one. This index formulation is used to turn out a conjecture of Hirzebruch about the relation of signature defects of cusps of Hilbert modular types and designated values of L-series. This booklet is meant for readers operating within the box of automorphic kinds and research on non-compact Riemannian manifolds, and assumes an information of PDE, scattering idea and harmonic research on semisimple Lie teams.

Show description

Read Online or Download Manifolds with Cusps of Rank One: Spectral Theory and L2-lndex Theorem PDF

Similar mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This publication offers a self-contained therapy of 2 of the most difficulties of multiparameter spectral idea: the life of eigenvalues and the growth in sequence of eigenfunctions. the consequences are first acquired in summary Hilbert areas after which utilized to indispensable operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation thought of the complicated particular linear group)
* five Léo Kaloujnine Sur los angeles constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, endless team theory)
* 6. Pierre Samuel l. a. théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et l. a. travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein approach linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für procedure von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de los angeles théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes keeps d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; creation à l. a. géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes maintains d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : class, measurement, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse thought, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de recommendations des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de sessions neighborhood selon G. P. Hochschild (local type box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de l. a. théorie locale des corps de sessions (local fields)
* forty eight Jean Leray, los angeles résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, common style)

Extra info for Manifolds with Cusps of Rank One: Spectral Theory and L2-lndex Theorem

Example text

Made in radio theory of the "gain" obtained by vacuum tube. The formula for this gain is of a three-element f Gain ^ where RP is . = &RL TFT~ the plate resistance and ; RL ^ is * the load resistance. the use ENGINEERING PROBLEMS 56 Sketch a graph of gain/ju as a function of a. R P /RL and identify the curve. Sketch a graph of gain//z as a function of RL/RP and identify the b. curve. 186. An indicator card, which shows how the pressure varies with the volume in an engine cylinder, has the theoretical shape shown in 2 Feu.

The coordinates of point E are the values of the stresses a and r on the small triangular block shown the circle in variables , , in Fig. 52. Remark: (as / ( shown tan 2a = one studies the stresses in a small triangular section of abeam on a plane making an angle a as shown If in Fig. 52), the stresses 9 \ ^ (Tf. 163. are given (Tn / ) by

Long as shown in Fig. 45. It supports three concentrated loads as shown. In strength of materials one learns what the term "shear" means. a. In this problem you are to write the equations for the four shear shown in the lower part of Fig. 45). lines (straight lines ANALYTIC GEOMETRY b. 41 Also determine the total area bounded by these shear lines and the is positive if above the x axis and negative if below). x axis (the area Determine the area between the first shear line and the x axis from to x = X, where X is between and 3 between 3 and 6 between 6 and 7; between 7 and 12.

Download PDF sample

Rated 4.03 of 5 – based on 41 votes