Exact and Approximate Controllability for Distributed by Roland Glowinski, Jacques-Louis Lions, Jiwen He

By Roland Glowinski, Jacques-Louis Lions, Jiwen He

This booklet investigates how a consumer or observer can effect the habit of structures mathematically and computationally. a radical mathematical research of controllability difficulties is mixed with an in depth research of tools used to unravel them numerically; those equipment being tested by means of the result of numerical experiments. within the first a part of the e-book, the authors talk about the maths and numerics on the subject of the controllability of platforms modeled by means of linear and non-linear diffusion equations; half is devoted to the controllability of vibrating platforms, regular ones being these modeled by means of linear wave equations; and eventually, half 3 covers move keep watch over for platforms ruled through the Navier-Stokes equations modeling incompressible viscous circulation. The booklet is obtainable to graduate scholars in utilized and computational arithmetic, engineering and physics; it's going to even be of use to extra complicated practitioners.

Show description

By Roland Glowinski, Jacques-Louis Lions, Jiwen He

This booklet investigates how a consumer or observer can effect the habit of structures mathematically and computationally. a radical mathematical research of controllability difficulties is mixed with an in depth research of tools used to unravel them numerically; those equipment being tested by means of the result of numerical experiments. within the first a part of the e-book, the authors talk about the maths and numerics on the subject of the controllability of platforms modeled by means of linear and non-linear diffusion equations; half is devoted to the controllability of vibrating platforms, regular ones being these modeled by means of linear wave equations; and eventually, half 3 covers move keep watch over for platforms ruled through the Navier-Stokes equations modeling incompressible viscous circulation. The booklet is obtainable to graduate scholars in utilized and computational arithmetic, engineering and physics; it's going to even be of use to extra complicated practitioners.

Show description

Read or Download Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications (No. 117)) PDF

Best mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This e-book offers a self-contained therapy of 2 of the most difficulties of multiparameter spectral conception: the lifestyles of eigenvalues and the growth in sequence of eigenfunctions. the implications are first got in summary Hilbert areas after which utilized to fundamental operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation idea of the advanced exact linear group)
* five Léo Kaloujnine Sur l. a. constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, limitless team theory)
* 6. Pierre Samuel los angeles théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et los angeles travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein process linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : l. a. transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für procedure von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de l. a. théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes maintains d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; advent à l. a. géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de l. a. croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes maintains d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : type, size, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized capability theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse concept, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de options des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de periods neighborhood selon G. P. Hochschild (local category box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de los angeles théorie locale des corps de sessions (local fields)
* forty eight Jean Leray, los angeles résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, common kind)

Additional info for Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications (No. 117))

Sample text

197) and for n = 2, . . , N − 1, 3 n 2y − 2yn−1 + 12 yn−2 + Ayn = v n χO in t , yn = 0 on . 198) In principle, 2yN −1 − yN −2 is an O(| t|2 ) accurate approximation of y(T ) obtained by extrapolation. 5 of this volume. 118) – as { t, h, H } → 0. 4 (whose notation is kept) by  t   fhH ∈ E0H ;   ∀g ∈ E0H we have k −1 fhHt + t t hH fhH n yT − Y0h g dx. 201) (that is, there exists θ0 > 0, such that θ ≥ θ0 , ∀θ angle of Th , ∀h). 169a). Proof. To simplify the presentation, we split the proof in several steps.

34 is one of the most powerful tools of Scientific Computing; it is currently used to solve very complicated problems from Science and Engineering which may involve many millions of unknowns. Largescale applications of the above algorithm will be found in several parts of this book (application to the solution of problems from Fluid Dynamics can be found in, for example, Glowinski, 2003). The popularity of the conjugate gradient methodology is clearly related to its good convergence properties.

167a) n−1 n via the solution of the is known, compute Y0h For n = 1, . . , N , assuming that Y0h following (approximate and well-posed) elliptic problem:  n   Y0h ∈ V0h , n − Y n−1 Y0h  n 0h  , z) = 0, z dx + a(Y0h t The operator t hH ∀z ∈ V0h . 8 Numerical methods 37 for n = N , N − 1, . . , 1, we compute ψhn from ψhn+1 via the solution of the following discrete Dirichlet problem:  n   ψh ∈ V0h , ψhn − ψhn+1   z dx + a(z, ψhn ) = 0, t Second problem ∀z ∈ V0h . 170a) for n = 1, . .

Download PDF sample

Rated 4.38 of 5 – based on 5 votes