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Sergei Abramov

PREFACE

The Waterloo Workshop on Computer Algebra (WWCA-2006) was held
on April 10–12, 2006 at Wilfrid Laurier University (Waterloo, Ontario,
Canada) hosted by CARGO (http://www.cargo.wlu.ca). The workshop
provided a forum for researchers and practitioners to discuss recent ad-
vances in the area of Computer Algebra. WWCA-2006 was dedicated to
the 60th birthday of Sergei Abramov (Computer Center of the Russian
Academy of Sciences, Moscow, Russia) whose influential contributions to
symbolic methods are highly acknowledged by the research community and
adopted by the leading Computer Algebra systems. The workshop attracted
world-renowned experts from both the academia and the software industry.
Presentations on original research topics or surveys of the state of the art
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advances in particular areas of Computer Algebra were made by

• Sergei Abramov, CCRAS, Russia
• Moulay Barkatou, University of Limoges, France
• Jacques Carette, McMaster University, Canada
• Robert Corless, University of Western Ontario, Canada
• Jürgen Gerhard, Maplesoft, Canada
• Oleg Golubitsky, Queens University, Canada
• Gaston Gonnet, ETH Zurich, Switzerland
• Kevin Hare, University of Waterloo, Canada
• Ilias Kotsireas, Wilfrid Laurier University, Canada
• George Labahn, University of Waterloo, Canada
• Ziming Li, Academy of Mathematics and System Sciences, China
• Luc Rebillard, University of Waterloo, Canada
• Bruno Salvy, INRIA Rocquencourt, France
• Éric Schost, University of Western Ontario, Canada
• Arne Storjohann, University of Waterloo, Canada
• Serguei Tsarev, Krasnoyarsk State Pedagogical University, Russia
• Mark van Hoeij, Florida State University, USA
• Thomas Wolf, Brock University, Canada
• Doron Zeilberger, Rutgers University, USA
• Eugene Zima, Wilfrid Laurier University, Canada

Presentations abstracts are published by the ACM Communications in
Computer Algebra, Volume 40, Number 2, June 2006, Issue 156, pp. 52-59.

Success of the workshop was also due to the support of the Academic
Development Fund, Office of the Vice-President Academic, Research Of-
fice, and Department of Physics and Computer Science of Wilfrid Laurier
University.

This book presents a collection of formally refereed selected papers sub-
mitted after workshop. Topics discussed in this book are the latest advances
in algorithms of symbolic summation, factorization, symbolic-numeric lin-
ear algebra and linear functional equations, i.e. topics of symbolic compu-
tations that were extensively advanced due to Sergei’s influencial works.

This book wouldn’t have been possible without the contributions and
hard work of the anonymous referees, who supplied detailed referee reports
and helped authors improve their papers significantly.

Eugene Zima, Ilias Kotsireas
Wilfrid Laurier University,
75 University Avenue West,
Waterloo, Ontario, Canada N2L 3C5 April 2007
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HYPERGEOMETRIC SUMMATION REVISITED

S. A. ABRAMOV∗

Dorodnicyn Computing Centre, Russian Academy of Sciences,
Vavilova 40, Moscow GSP-1, 119991, Russia

E-mail: sabramov@ccas.ru

M. PETKOVŠEK†

Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, SI-1000 Ljubljana, Slovenia

E-mail: marko.petkovsek@fmf.uni-lj.si

We consider hypergeometric sequences, i.e., the sequences which satisfy lin-
ear first-order homogeneous recurrence equations with relatively prime poly-
nomial coefficients. Some results related to necessary and sufficient conditions
are discussed for validity of discrete Newton-Leibniz formula

∑w
k=v t(k) =

u(w + 1) − u(v) when u(k) = R(k)t(k) and R(k) is a rational solution of
Gosper’s equation.

Keywords: Symbolic summation; Hypergeometric sequences; Discrete Newton-
Leibniz formula.

1. Introduction

Let K be a field of characteristic zero (K = C in all examples). If t(k) ∈
K(k) then the telescoping equation

u(k + 1)− u(k) = t(k) (1)

may or may not have a rational solution u(k), depending on the type of t(k).
Here the telescoping equation is considered as an equality in the rational-
function field, regardless of the possible integer poles that u(k) and/or t(k)
might have.

An algorithm for finding rational u(k) was proposed in 1971 (see Ref. 1).
It follows from that algorithm that if t(k) has no integer poles, then a

∗Partially supported by RFBR under grant 07-01-00482-a.
†Partially supported by MVZT RS under grant P1-0294.
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rational u(k) satisfying (1), if it exists, has no integer poles either, and the
discrete Newton-Leibniz formula

w∑
k=v

t(k) = u(w + 1) − u(v) (2)

is valid for any integer bounds v ≤ w. Working with polynomial and ra-
tional functions we will write f(k)⊥g(k) for f(k), g(k) ∈ K[k] to indi-
cate that f(k) and g(k) are coprime; if R(k) ∈ K(k), then den(R(k))
is the monic polynomial from K[k] such that R(k) = f(k)

den(R(k)) for some
f(k) ∈ K[k], f(k)⊥den(R(k)).

The problem of solving equation (1) can be considered for sequences.
If t(k) is a sequence, we use the symbol E for the shift operator w.r. to
k, so that Et(k) = t(k + 1). In the rest of the paper we assume that
the sequences under consideration are defined on an infinite interval I of
integers and either I = Z, or

I = Z≥l = {k ∈ Z | k ≥ l}, l ∈ Z.

If a sequence t(k) defined on I is given, and a sequence u(k), which is also
defined on I and satisfies (1) for all k ∈ I, is found (any such sequence is a
primitive of t(k)), then we can use formula (2) for any v ≤ w with v, w ∈ I.

Gosper’s algorithm,6 which we denote hereafter by GA, discovered in
1978, focuses on the case where a given t(k) and an unknown u(k) are
hypergeometric sequences.

Definition 1.1. A sequence y(k) defined on an infinite interval I is hyper-
geometric if it satisfies the equation Ly(k) = 0 for all k ∈ I, with

L = a1(k)E + a0(k) ∈ K[k,E], a1(k)⊥ a0(k). (3)

GA starts by constructing the operator L for a given concrete hypergeo-
metric sequence t(k), and this step is not formalized. On the next steps GA
works with L only, while the sequence t(k) itself is ignored (more precisely,
in the case of L = a1(k)E+a0(k), GA works with the certificate of t(k), i.e.,
with the rational function −a0(k)

a1(k) , but this is not essential). The algorithm
tries to construct a rational function R(k), which is a solution in K(k) of
Gosper’s equation

a0(k)R(k + 1) + a1(k)R(k) = −a1(k) (4)

(such R(k), when it exists, can also be found by general algorithms from
Refs. 2,3). If such R(k) exists then

R(k + 1)t(k + 1)−R(k)t(k) = t(k)
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is valid for almost all integers k. The fact is that even when t(k) is defined
everywhere on I, it can happen that R(k) has some poles belonging to I,
and u(k) = R(k)t(k) cannot be defined in such a way as to make (1) valid
for all integers from I. One can encounter the situation where formula (2)
is not valid even when all of

t(v), t(v + 1), . . . , t(w), u(v), u(w + 1)

are well-defined. The reason is that (1) may fail to hold at certain points
k of the summation interval. However, sometimes it is possible to define
the values of u(k) = R(k)t(k) appropriately for all integers k, even though
R(k) has some integer poles. In such well-behaved cases (2) can be used to
compute

∑w
k=v t(k) for any v ≤ w, v, w ∈ I.

Example 1.1.
Gosper’s equation, corresponding to L = kE − (k + 1)2, has a solution

R = 1
k . The sequences

t1(k) =
{

0, if k < 0,
k · k!, if k ≥ 0

and

t2(k) =

{
(−1)kk
(−k−1)! , if k < 0,
0, if k ≥ 0

both satisfy Ly = 0 on I = Z.
Generally speaking, (2) is not applicable to t1(k), but is applicable to

t2(k). We can illustrate this as follows. Applying (2) to t1(k) with v =
−1, w = 1, we have

t1(−1) + t1(0) + t1(1) =
1
k
t1(k) |k=2 − 1

k
t1(k) |k=−1 =

1
2
· 4 − 0 = 2

which is wrong, because t1(−1) + t1(0) + t1(1) = 0 + 0 + 1 = 1. Applying
(2) to t2 with the same v, w, we have

t2(−1) + t2(0) + t2(1) =
1
k
t2(k) |k=2 − 1

k
t2(k) |k=−1 = 0 − (−1) = 1

which is correct, because t2(−1) + t2(0) + t2(1) = 1 + 0 + 0 = 1.

In this paper we discuss some results related to necessary and sufficient
conditions for validity of formula (2) when u(k) = R(k)t(k), and R(k) is a
rational solution of corresponding Gosper’s equation. If such R(k) exists,
then we describe the linear space of all hypergeometric sequences t(k) that
are defined on I and such that formula (2) is valid for u = Rt and any
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integer bounds v ≤ w such that v, w ∈ I. The dimension of this space is
always positive (it can be even bigger than 1). We will denote

• by HI the set of all hypergeometric sequences defined on I;
• by L the set of all operators of type (3);
• by VI(L), where L ∈ L, the K-linear space of all sequences t(k)

defined on I for which Lt(k) = 0 for all k ∈ I;
• by WI(R(k), L), where L ∈ L and R(k) ∈ K(k) is a solution of the

corresponding Gosper’s equation, the K-linear space of all t(k) ∈
VI(L) such that (2) with u(k) = R(k)t(k) is valid for all v ≤ w

with v, w ∈ I.
The paper is a summary of the results that have been published in Refs. 4,5.
In addition we consider the case where Gosper’s equation has non-unique
rational solution (Section 3.2). In Section 2 we consider individual hyperge-
ometric sequences while in Section 3 we concentrate on spaces of the type
WI(R(k), L).

2. Validity conditions of the discrete Newton-Leibniz
formula

2.1. A criterion

Theorem 2.1.4,5 Let L ∈ L, t(k) ∈ VI(L), and let Gosper’s equation
corresponding to L have a solution R(k) ∈ K(k), with den(R) = g(k). Then
t(k) ∈ WI(R(k), L) iff there exists a t̄(k) ∈ HI such that t(k) = g(k)t̄(k)
for all k ∈ I.
Example 2.1. Consider again the sequences t1(k), t2(k) on I = Z from
Example 1.1. We have t2(k) = kt̄2(k), where

t̄2(k) =

{
(−1)k

(−k−1)! , if k < 0,
0, if k ≥ 0

is a hypergeometric sequence defined everywhere:

Et̄2(k) − (k + 1)t̄2(k) = 0.

On the other hand, if t1(k) = kt̄1(k) for some sequence t̄1(k), then

t̄1(k) =

⎧⎨⎩
0, if k < 0,
ζ, if k = 0,
k!, if k > 0
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where ζ ∈ C. Notice that the sequence t̄1(k) is not hypergeometric on Z,
for any ζ ∈ C.

2.2. Summation of proper hypergeometric sequences

Definition 2.1. Following conventional notation, the rising factorial power
(α)k and its reciprocal 1/(β)k are defined for α, β ∈ K and k ∈ Z by

(α)k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∏
m=0

(α +m), k ≥ 0;

|k|∏
m=1

1
α−m

, k < 0, α �= 1, 2, . . . , |k|;
undefined, otherwise;

1
(β)k

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∏
m=0

1
β +m

, k ≥ 0, β �= 0,−1, . . . , 1 − k;

|k|∏
m=1

(β −m), k < 0;

undefined, otherwise.

Note that if (α)k resp. 1/(β)k is defined for some k ∈ Z, then (α)k+1

resp. 1/(β)k−1 is defined for that k as well. Thus (α)k and 1/(β)k are
hypergeometric sequences which satisfy

(α)k+1 = (α+ k)(α)k, (β + k)/(β)k+1 = 1/(β)k (5)

whenever (α)k and 1/(β)k+1 are defined.

Example 2.2. Let t(k) = (k − 2)(−1/2)k/(4k!). This hypergeometric se-
quence is defined for all k ∈ Z (note that t(k) = 0 for k < 0) and
satisfies Lt(k) = 0 for all n ∈ Z where L = a1(k)E + a0(k) with
a0(k) = −(k − 1)(2k − 1) and a1(k) = 2(k − 2)(k + 1). Gosper’s equa-
tion, corresponding to L, has a rational solution

R(k) =
2k(k + 1)
k − 2

. (6)

Equation (1) indeed fails at k = 1 and k = 2 because u(k) = R(k)t(k) is
undefined at k = 2. But if we cancel the factor k − 2 and replace u(k) by
the sequence

ū(k) = k(k + 1)
(−1/2)k

2k!
,
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then equation

ū(k + 1)− ū(k) = t(k) (7)

holds for all k ∈ Z, and
w∑

k=v

t(k) = ū(w + 1) − ū(v). (8)

The sequence t(k) from Example 2.2 is an instance of a proper hyperge-
ometric sequence which we are going to define now. As it turns out, there
are no restrictions on the validity of the discrete Newton-Leibniz formula
for proper sequences (Theorem 2.2).

Definition 2.2. A hypergeometric sequence t(k) defined on an infinite
interval I of integers is proper if there are

• a constant z ∈ K,
• a polynomial p(k) ∈ K[k],
• nonnegative integers q, r,
• constants α1, . . . , αq, β1, . . . , βr ∈ K

such that

t(k) = p(k)zk

∏q
i=1(αi)k∏r
j=1(βj)k

(9)

for all k ∈ I.

Theorem 2.2.4 Let t(k) be a proper hypergeometric sequence defined on I

and given by (9). Denote a(k) = z
∏q

i=1(k + αi) and b(k) =
∏r

j=1(k + βj).
If a polynomial y(k) ∈ K[k] satisfies

a(k)y(k + 1)− b(k − 1)y(k) = p(k) (10)

and if

ū(k) = y(k)zk

∏q
i=1(αi)k∏r

j=1(βj)k−1

for all k ∈ I, then equation (7) holds for all k ∈ I, and the discrete Newton-
Leibniz formula (8) is valid for all v ≤ w, when v, w ∈ I.

Notice that (10) has a solution in K[k] iff Gosper’s equation, corre-
sponding to the operator from L, annihilating t(k), has a solution in K(k).
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Example 2.3. The hypergeometric sequence

t(k) =

(
2k−3

k

)
4k

, (11)

which is defined for all k ∈ Z can be written as

t(k) =
{

2s(k), k < 2,
s(k), k ≥ 2,

where

s(k) = (2 − k)
(−1/2)k

4(1)k

is the proper sequence from Example 2.2. For w ≥ 1, one should first split
summation range in two

w∑
k=0

t(k) =
3
4

+
w∑

k=2

s(k),

then the discrete Newton-Leibniz formula can be safely used to evaluate
the sum on the right. However, applying directly (2) to (11) with (6) we
obtain

w∑
k=0

t(k) =(?) u(w + 1)− u(0) =
(w + 1)(w + 2)

(
2w−1
w+1

)
2(w − 1)4w

. (12)

If we assume that the value of
(
2k−3

k

)
is 1 when k = 0 and −1 when k = 1

(that is natural from combinatorial point of view) then the expression on
the right gives the true value of the sum only at w = 0.

2.3. When the interval I contains no leading integer

singularity of L

Definition 2.3. For a linear difference operator (3) we call M = max({k ∈
Z; a1(k − 1) = 0} ∪ {−∞}) the maximal leading integer singularity of L,

Proposition 2.1.4 Let R(k) be a rational solution of (4). Then R(k) has
no poles larger than M − 1.

Theorem 2.3.4 Let L ∈ L, M be the maximal integer singularity of L,
l ≥M , I = Z≥l and t(k) ∈ VI(L). Let Gosper’s equation, corresponding to
L, have a solution R(k) in K(k). Then t(k) ∈WI(R(k), L).
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Example 2.4. For the sequence (11) we have a0(k) = −(2k − 1)(k − 1),
a1(k) = 2(k + 1)(k − 2), R(k) = 2k(k + 1)/(k − 2), and u(k) = 2k(k +
1)
(
2k−3

k

)
/((k − 2)4k). Thus M = 3, and the only pole of R(k) is k = 2.

As predicted by Theorem 2.3, the discrete Newton-Leibniz formula is valid
when, e.g., 3 ≤ v ≤ w.

3. The spaces VI(L) and WI(R(k), L)

3.1. The structure of WI(R(k), L)

Theorem 3.1.5 Let L ∈ L and Gosper’s equation, corresponding to L, have
a solution R(k) ∈ K(k), den(R) = g(k). Then

WI(R(k), L) = g(k) · VI(pp(L ◦ g(k))),
where the operator pp(L ◦ g(k)) is computed by removing from L ◦ g the
greatest common polynomial factor of its coefficients.

In addition, if R = f(k)
g(k) , f(k)⊥g(k), then the space of the corresponding

primitives of the elements of WI(R(k), L) can be described as f(k)·VI(pp(L◦
g(k))).

We will denote by L̄ the operator pp(L ◦ g(k)).
Example 3.1. Consider again the operator L = kE − (k + 1)2 from Ex-
ample 1.1 with I = Z. We have R = 1

k , and

L ◦ k = kE ◦ k − (k + 1)2k = k(k + 1)E − (k + 1)2k = k(k + 1)(E − k − 1),

L̄ = E − (k + 1).

The space WI(R(k), L̄) is generated by t̄2, and, resp., the space k ·
WI(R(k), L̄) is generated by kt̄2. In accordance with Theorem 3.1 the space
WI(R(k), L) coincides with k · VI(L̄).

It is possible to give examples showing that in some cases
dimWI(R(k), L) > 1.

Example 3.2.
Let L = 2(k2−4)(k−9)E−(2k−3)(k−1)(k−8), I = Z. Then Gosper’s

equation, corresponding to L, has the rational solution

R(k) = −2(k − 3)(k + 1)
k − 9

.

Here g(k) = k − 9 and L̄ = 2(k2 − 4)E − (2k − 3)(k − 1). Any sequence t̄
which satisfies the equation L̄t̄ = 0 has t̄(k) = 0 for k = 2 or k ≤ −2. The
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values of t̄(1) and t̄(3) can be chosen arbitrarily, and all the other values are
determined uniquely by the recurrence 2(k2−4)t̄(k+1) = (2k−3)(k−1)t̄(k).
Hence dimVI(L̄) = 2.

At the same time, dimVI(L) = 3. Indeed, if Lt = 0, then t(−2) = t(2) =
t(9) = 0. The value t(k) = 0 from k = −2 propagates to all k ≤ −2, but on
each of the integer intervals [−1, 0, 1], [3, 4, 5, 6, 7, 8] and [10, 11, . . . ) we can
choose one value arbitrarily, and the remaining values on that interval are
then determined uniquely. A sequence t(k) ∈ VI(L) belongs to WI(R(k), L)
iff 22t(10)− 13t(8) = 0. So dimWI(R(k), L) = 2.

3.2. When a rational solution of Gosper’s equation is not

unique

We give an example showing that if L ∈ L and Gosper’s equation, cor-
responding to L, has different solutions R1(k), R2(k) ∈ K(k), then it is
possible that WI(R1(k), L) �= WI(R2(k), L). Moreover, these two spaces
can have different dimensions.

Example 3.3. If L = kE− (k+1), then Gosper’s equation, corresponding
to L, is

−(k + 1)R(k + 1) + kR(k) = −k,
and its general rational solution is

k − 1
2

+
c

k
=
k2 − k + 2c

2k
.

Consider the solutions

R1(k) =
k − 1

2
(g1(k) = 1), and R2(k) =

k2 − k + 2
2k

(g2(k) = k).

We have L ◦ g1(k) = L, and WI(R1(k), L) = VI(L). This space has a
basis that consists of two linearly independent sequences:

t1(k) =
{
k, if k ≤ 0,
0, if k > 0

and

t2(k) =
{

0, if k ≤ 0,
k, if k > 0.

So this space contains, e.g., the sequence t(k) = |k|.
We have L◦g2(k) = k(k+1)(E−1), thereforeWI(R2(k), L) is generated

by the sequence t(k) = k.
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If Gosper’s equation, corresponding to L ∈ L, has non-unique solution
in K(k), then the equation Ly = 0 has a non-zero solution in K(k).

3.3. If Gosper’s equation has a rational solution R(k) then

WI(R, L) �= 0

Theorem 3.2.5 Let L ∈ L and let Gosper’s equation, corresponding
to L, have a solution R(k) ∈ K(k). Then WI(R(k), L) �= 0 (i.e.,
dimWI(R(k), L) ≥ 1).

Example 3.4.
Let L = (k+2)E−k. The rational function 1

k(k+1) is a solution in K(k)
of the equation Ly = 0. Here R(k) = −k− 1, and −1/k is a solution of the
corresponding telescoping equation:

− 1
k + 1

+
1
k

=
1

k(k + 1)
.

The rational functions
1

k(k + 1)
and − 1

k

have integer poles. Nevertheless, by Theorem 3.2 it has to be WI(R(k), L) �=
0 even when I = Z. The space WI(R(k), L) is generated by the sequence

t(k) =

⎧⎨⎩
1, if k = −1,
−1, if k = 0,
0, otherwise,

while the primitive of t(k) is

(−k − 1)t(k) =
{

1, if k = 0,
0, otherwise.

If I = Z≥1, then WI(R(k), L) is generated by the sequence t′(k) = 1
k(k+1) .

By Theorem 2.3, if M is the maximal integer singularity of L, l ≥
M , I = Z≥l, and Gosper’s equation, corresponding to L, has a solution
R(k) in K(k), then VI(L) = WI(R(k), L). As a consequence, dim VI(L) =
dimWI(R(k), L) = 1.
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