Lecture Notes in Computer Science 892
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

K. Pingali U. Banerjee D. Gelernter
A. Nicolau D. Padua (Eds.)

Languages and Compilers
for Parallel Computing

7th International Workshop
Ithaca, NY, USA, August 8-10, 1994
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universitit Karlsruhe
Vincenz-Priessnitz-Strae 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaka, NY 14853, USA

Jan van Leeuwen
Department of Computer Science, Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Volume Editors

Keshav Pingali
Department of Computer Science, Cornell University
Ithaca, NY 14853, USA

Utpal Banerjee

Intel Corporation

2200 Mission College Blvd. P.O. Box 58119, RN6-18
Santa Clara, CA 95052, USA

David Gelernter

Department of Computer Science, Yale University

51 Prospect St., New Haven, CT 06520, USA

Alex Nicolau

Department of Information & Computer Science, University of California
444 Computer Science Bldg., Irvine, CA 92717, USA

David Padua

Center for Supercomputing Research and Development

465 Computer and Systems Research Laboratory

1308 West Main St., Urbana, IL 61801, USA

CR Subject Classification (1991): F.1.2,D.1.3, D.3.1, B.2.1, 1.3.1
ISBN 3-540-58868-X Springer-Verlag Berlin Heidelberg New York

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1963, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright

Law.

© Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author ‘
SPIN: 10479285 45/3140-543210 - Printed on acid-free paper

Foreword

The papers in this volume are revised versions of papers presented at the Sev-
enth Annual Workshop on Languages and Compilers for Parallel Computers
which was held in Ithaca, NY August 8th-10th, 1994. This workshop series has
traditionally been a forum for the presentation of state-of-the-art research in lan-
guages, restructuring compilers and runtime systems by leading groups in the
US, Europe and Japan. This year, we received about 45 submissions in response
to the call for papers. Because of time constraints, we were unable to accept
all papers, and these proceedings contain the 32 papers that were selected for
presentation.

Thanks are due to many people for making the workshop a success. The members
of the standing program committee — Utpal Banerjee, David Gelernter, Alex
Nicolau and David Padua — were a great source of advice and information. He-
lene Croft put the entire database of names and addresses online, which should
make it easier to run this workshop in future years. She was also relentless in
tracking down tardy authors, referees, speakers and attendees, which made the
workshop run like clockwork! Thanks are due to the referees: Utpal Banerjee,
Carrie Brownhill, A. Capitanio, Sudeep Gupta, David Gelernter, Laurie Hen-
dren, J. Hummel, Richard Johnson, Indu Kodukula, David Kolson, Vladimir
Kotlyar, Wei Li, Mayan Moudgill, Alex Nicolau, Rishiyur Nikhil, Steve Novack,
F. Onion, David Padua, Anne Rogers, Paul Stodghill, Thorsten von Eicken, H.
Wang and Richard Zippel. Finally, the Cornell Department of Computer Science,
and the Cornell Theory Center gave generous financial grants, which allowed us
to reduce the registration fee for participants.

October, 1994

Keshav Pingali
Program Chair

Table of Contents

Starting Small: Fine-Grain Parallelism

Fine-Grain Scheduling under Resource Constraints 1

Paul Feautrier
Université de Versailles, France

Mutation Scheduling: A Unified Approach to Compiling for Fine-
Grain Parallelism 16

Steven Novack, Alexandru Nicolau
University of California at Irvine

Compiler Techniques for Fine-Grain Execution on Workstation
Clusters Using PAPERS 31

H.G. Dietz, W.E. Cohen, T. Muhammad, T.I. Mattox
Purdue University, West Lafayette, Indiana

Getting Your Ducks in a Row: Alignment and Distribu-
tion

Solving Alignment Using Elementary Linear Algebra 46
David Bau, Induprakas Kodukula, Vladimir Kotlyar, Keshav
Pingali, Paul Stodghill
Cornell University, Ithaca, New York

Detecting and Using Affinity in an Automatic Data Distribution

Tool 61

Eduard Ayguadé, Jordi Garcia, Merce Gironés, Jestis Labarta,
Jordi Torres, Mateo Valero
Polytechnic University of Catalunya, Barcelona, Spain

Array Distribution in Data-Parallel Programs 76

Siddhartha Chatterjee, Robert Schreiber, Thomas J. Sheffler
NASA Ames Research Center, Moffett Field, California
John R. Gilbert

Xeroz Research Center, Palo Alto, California

Postlinear Loop Transformations

Communication-Free Parallelization via Affine Transformations. 92

Amy W. Lim, Monica S. Lam
Stanford University, California

Vil

Finding Legal Reordering Transformations Using Mappings . . . 107

Wayne Kelly, William Pugh
University of Maryland, College Park

A New Algorithm for Global Optimization for Parallelism and
Locality it i e e 125

Bill Appelbe, Srinivas Doddapaneni, Charles Hardnett
Georgia Institute of Technology, Atlanta

What Next?

Polaris: Improving the Effectiveness of Parallelizing Compilers . 141

William Blume, Rudolf Figenmann, Keith Faigin, John Grout,
Jay Hoeflinger, David Padua, Paul Petersen, William Pot-
tenger, Lawrence Rauchwerger, Peng Tu, Stephen Weatherford
University of Nllinois at Urbana

A Formal Approach to the Compilation of Data-Parallel
Languages o e e e e 155

J.A. Trescher, L.C. Breebaart, P.F.G. Dechering,
A.B. Poelman, J.P.M. de Vreught, H.J. Sips
Delft University of Technology, The Netherlands

The Data Partitioning Graph: Extending Data and Control
Dependencies for Data Partitioning 170

Tsuneo Nakanishi, Kazuki Joe, Akira Fukuda, Keijiro Araki
Nara Institule of Science and Technology, Japan

Hideki Saito, Constantine D. Polychronopoulos

University of Lllinois at Urbana

Back to Basics: Program Analysis

Detecting Value-Based Scalar Dependence 186

Eric Stoltz, Michael Wolfe
Oregon Graduate Institute of Science & Technology, Portland

Minimal Data Dependence Abstractions for Loop Transfor-
mations e e e e e 201

Yi-Qing Yang, Corinne Ancourt, Frangois Irigoin
Ecole des Mines de Paris, France

IX

Differences in Algorithmic Parallelism in Control Flow and Call
Multigraphs i e 217

Vincent Sgro, Barbara G. Ryder
Rutgers University, New Brunswick, New Jersey

Flow-Insensitive Interprocedural Alias Analysis in the Presence
of Pointers0 234

Michael Burke, Paul Carini, Jong-Deok Choi

IBM Watson Research Center, Yorktown Heights, N Y
Michael Hind

State Universily of New York at New Paltz, and

IBM Watson Research Center, Yorktown Heights, NY

How to Communicate Better
Incremental Generation of Index Sets for Array
Statement Execution on Distributed-Memory Machines ... 251

S.D. Kaushik, C.-H. Huang, P. Sadayappan
The Ohio State University, Columbus

A Unified Data-Flow Framework for Optimizing Communication 266

Manish Gupta, Edith Schonberg, Harini Srinivasan
IBM Watson Research Cenler, Yorktown Heights, NY

Interprocedural Communication Optimizations for Distributed
Memory Compilation 283

Gagan Agrawal, Joel Saltz
University of Maryland, College Park

Automatic Parallelization Considered Unnecessary

Analysis of Event Synchronization in Parallel Programs 300

J. Ramanujam, A. Mathew
Louisiana State University, Baton Rouge

Computing Communication Sets for Control Parallel Programs . 316

Jeanne Ferrante

IBM Waison Research Center, Yorktown Heights, NY
Dirk Grunwald, Harini Srinivasan

University of Colorado, Boulder

Optimizing Parallel SPMD Programs

Arvind Krishnamurthy, Katherine Yelick
University of California at Berkeley

Languages for Parallelism:
Something Borrow, Something New

An Overview of the Opus Language and Runtime System . .

Piyush Mehrotra, Matthew Haines
Institute for Computer Applications in Science and Engineer-
ing, Hampton, Virginia

SIMPLE Performance Results in ZPL

Calvin Lin, Lawrence Snyder
University of Washington, Seattle

Cid: A Parallel, “Shared-Memory” C for Distributed-Memory
Machines i ittt e,

Rishiyur S. Nikhit
Digital Equipment Corporation, Cambridge, Massachusetis

EQ: Overview of a New Language Approach for Prototyping
Scientific Computation

Thomas Derby, Robert Schnabel, Benjamin Zorn
Universily of Colorado al Boulder

And Now, for Something Completely Different
Reshaping Access Patterns for Generating Sparse Codes

Aart J.C. Bik, Peter M.W. Knijnenburg, Harry A.G. Wijshoff
Leiden University, The Netherlands

Evaluating Two Loop Transformations for Reducing Multiple-
Writer False Sharing

Francois Bodin, Thierry Montaut
IRISA,Campus de Beaulieu, Rennes, France
Elana D. Granston

Rice University, Houston, Tezas

Parallelizing Tree Algorithms: Overhead vs. Parallelism

Jon A. Solworth, Bryan B. Reagan
University of Hlinois at Chicago

When Your Program Runs (Finally)

Autoscheduling in a Distributed Shared-Memory Environment .

José E. Moreira, Constantine D. Polychronopoulos
University of Rlinois at Urbana-Champaign

. . 346

455

X

Optimizing Array Distributions in Data-Parallel Programs. . . . 472

Krishna Kunchithapadam, Barton P. Miller
Universily of Wisconsin at Madison

Automatic Reduction Tree Generation for Fine-Grain Parallel
Architectures when Iteration Count is Unknown 487
Kei Hiraki
University of Tokyo, Japan
Satoshi Sekiguchi
Electrotechnical Laboratory, MITI, Ibaraki, Japan

Fine-grain Scheduling under Resource
Constraints

Paul Feautrier

Laboratoire PRiSM,
Université de Versailles, 45 Avenue des Etats-Unis,
78035 VERSAILLES FRANCE

Abstract. Many present-day microprocessors have fine grain parallelism,
be it in the form of a pipeline, of multiple functional units, or replicated
processors. The efficient use of such architectures depends on the capa-
bility of the compiler to schedule the execution of the object code in
such a way that most of the available hardware is in use while comply-
ing with data dependences. In the case of one simple loop, the schedule
may be expressed as an affine form in the loop counter. The coefficient
of the loop counter in the schedule is the initiation interval, and gives
the mean rate at which loop bodies may be executed. The dependence
constraints may be converted to linear inequalities in the coefficients of
a closed form schedule, and then solved by classical linear programming
algorithms. The resource constraints, however, translate to non-linear
constraints. These constraints become linear if the initiation interval is
known. This leads to a fast searching algorithm, in which the initiation
interval is increased until a feasible solution is found.

1 Introduction

Thinking about parallel programs is a notoriously difficult task. One of the most
successful techniques for dealing with this problem is scheduling, i.e. the con-
struction of a timetable for the operations of the program. Scheduling is a difficult
problem. Various special cases have been proved to be NP-hard or NP-complete.
Most of the complexity of scheduling can be assigned to the conjunction of two
type of constraints:

— dependence constraints, which express the fact that some computations must
be executed in a specified order if the meaning of the original program is to
be preserved; these constraints are usually expressed as a dependence graph.

— resource constraints, which express the fact that the number of simultaneous
operafion at any given time is limited by the available resources in the target
computer.

While any one of these constraints can be handled easily, it is their simultaneouns
presence which is at the origin of the difficulty. Fortunately, in many cases of
computer science interest, 1t 1s possible to handle the resource constraints in an
approximate way. It is custoruary in this context, to distinguish between coarse
grain, medium grain, and fine grain scheduling.

In coarse grain scheduling — e.g., job shop scheduling or macrotasking - the
tasks and the resources are few. The schedule is represented in tabular form,
and there are approximate techniques, like list scheduling, with precise bounds
on the approximation.

In medium grain scheduling, there are many tasks — typically as many as
there are operations in an execution of the source programm — and many iden-
tical resources — the processors in a massively parallel computer. The schedule
must be obtained in closed form. One may ignore the resource constraints in
computing the schedule [Fea92a, Fea92b], and then fold the schedule on the
available processors. One may prove [Fea89] that this solution is asymptotically
efficient, provided that the source program has enough intrinsic parallelism.

The situation is different for fine grain scheduling. Here the number of tasks
is large. The resources are few and discrete. At the most, resources may be
partitioned into classes, each class having a small number of identical resources.

Fine grain scheduling started some thirty years ago when the first computers
with multiple functional units — like the CDC 6600 — were put on the market.
It is now a very important technique, due to the advent of many computers
with instruction level parallelism, like pipelined computers, VLIW or superscalar
Processors.

In fine grain scheduling, it is impossible to ignore the resource constraints.
Several techniques have been proposed for solving the problem, at least in an
approximate way (see [RF93] for a comprehensive review of the subject). Trace
scheduling [Fis84] applies list scheduling to basic blocks; it tries to detect critical
paths in the program control graph and to enlarge basic blocs by moving code
around test instructions.

Software pipelining [RG81] applies to simple loops and aims at executing
several instances of the loop body in a staggered way so as to maximize re-
source usage and minimize the total execution time. A solution to the software
pipelining problem for a given loop is characterized by its initiation interval, i.e.
the time span between two successive iteration of the loop. It is easy to derive
bounds for the initiation interval: an upper bound is given by the sequential
execution time of the loop body. A lower bound is deduced from an analysis of
resource usage, see section 2.2, and another one can be obtained by constructing
an unconstrained schedule.

In many algorithms for software pipelining, one assume the iteration interval
is given, and applies list scheduling, taking care that each resource allocation
is folded modulo the initiation interval when constructing the reservation table
(see e.g. [Lam88]). The interval of admissible initiation intervals is explored by
binary search until the optimal value is found.

The algorithm of {GS92] applies only if there is only one resource class. The
program is first scheduled as if there were no resource constraints. Analysis of
the resulting schedule allows one to delete some dependences, and the resulting
dependence graph is cycle free. The final schedule is obtained by applying list
scheduling with resource constraints to this graph. The resulting schedule is
not optimal, but the authors show that the usual bound on the list scheduling

approximation applies.

This paper is an attempt to extend the scheduling techniques of [Fea92a),
which are based on linear programming, to fine grain scheduling. The next sec-
tion is a review of these techniques. The main theme of Section 3 is how to
convert the resource constraints into bilinear constraints. This is done in two
cases. In the first one, there is one unique resource of each type; in the second
case, there may be several copies of a resource. In the conclusion, I discuss the
complexity of the algorithm and point to some direction for future work.

2 A Review of Scheduling Techniques

I will consider here the problem of scheduling a single loop:

doi=1,...
Sl; Sn

end do

where the S; are scalar or array assignments. I have emphasized the fact that
the upper bound of the loop is irrelevant for the present problem. The solution
must be in the form of the repetition of a uniform pattern, the loop upper bound
controlling only the repetition factor.

A schedule is defined by n functions from the iteration counter, 7, to an
integral time. I will suppose that an appropriate unit of time has been chosen —
e.g., the clock cycle — and that all delays and durations are integral multiple of
this unit. Schedules are supposed to be of the form:

6(S,i) = |ai+bs|, (1)

where a and the bs are rational numbers. a is known as the initiation interval
of the schedule. The main objective of software pipelining is its minimization.

There are several reasons for choosing such a form. Firstly, all known methods
for computing schedules apply only to affine forms. It is true that a schedule
whose values are not integral has no meaning, but it has been shown that the
floor of a causal schedule is also causal, and that if the iteration domain is large
enough, schedules of the above form are nearly optimal [Qui87].

Before embarking on the solution proper, let us observe that there is some
leeway in the selection of bgs in (1). a is necessarily a rational number — if it
where not so, the schedule would not be periodic. It is easy to prove the following
lemmas

Lemmal. Leta = A/D be the representation of the initiation interval in lowest
terms. Any schedule of the form (1) is equivalent fo a schedule of the form:

Ai+B5J

o) = | 2% 2

where the Bg are integers.

Recent research on medium-grain scheduling [MQRS90, Fea92a] favors sched-
ules in which each statement has its own initiation interval. In the case of fine
grain parallelism, such a schedule generates very complicated code ? | hence our
insistence on the same initiation interval for all statements.

All schedules must satisfies the so-called causality condition: let us write
(Sk, 1) L (S1,4) if (Sk, i) and (S;,7) are in dependence, and (Sg,7) < (51,4)
if (Sk,%) is executed before (Si, 5) in the original program. The 'schedule must
verify:

(Sk,i) 1 (S},j) A (Sk,i) < (Sz,j) = G(Sk,i) + B(Sk) < G(Sz,j), (3)
where 9(Sy) is the duration of Si.

2.1 Dependences

The choice of the dependence relation in (3) is somewhat arbitrary. Ordinary
dependences include both the effect of data flow from operation to operation
and the constraints generated by the pattern of memory usage in the object
program. Value based dependences are much less constraining and are easily
computed by Array Dataflow Analysis [Fea9l]. There is a value-based depen-
dence between {S,1) and (R, j) iff (S, 1) writes into some memory cell a, if (R, 7)
reads a, (S,1) < {(R,J), and there is no write to a between (S5,7) and (R, j).
The result of Array Dataflow Analysis may be represented by a Dataflow Graph
(DFG), whose vertices are associated to statements and edges to dependences.
Each edge ¢ from S to R is decorated with a polyhedron P, and a transforma-
tion h, such that if 1 € P, then there is actually a value-based dependence from
(S, he()) to (R, 7). One may say that after Array Dataflow Analysis, all values
produced by the source code have been given distinct names, and the program
has been rewritten using these names. Array Dataflow Analysis may thus be
seen as a corapile time counterpart of Tomasulo Algorithm.

The shape of the dependence is given by the function h,. The simplest case
is that of uniform dependences for which h, is a translation:

he(d)=i—d.

where d, is known as the dependence distance. One may encounter more com-
plicated cases, where h, is an affine function, or even a sublinear function®. The
scheduling technique of {Fea®2a] works whenever the dependence is affine and is
not limited to uniform dependences.

Value based dependences will be used throughout this paper. In this context,
the causality condition (3) simplifies to:

Ve € DFG,Vi € Po : 0(R,i) > 0(S, he(i)) + 8(S). (4)

% The size of the code grows as the least common multiple of the initiation intervals.
3 A sublinear function contains integer divisions by constants.

This condition expresses the fact that since operation (R, :) uses a value which
is computed by (S, h.(z)), it cannot start before this operation has terminated.

The solution method starts by substituting the form (1) into (4). In the case
of uniform dependences, one may prove that:

Lemma2. The causality condition (4) is equivalent to:

ad, + b — bs > 8(S). (5)

Proof. That (5) implies (4) is proved in [Fea92a] Theorem 6. To prove the reverse
implication, choose for ¢ a multiple of D. Notice that if n is an integer, we have
the identity [n+ z| = n + |z]. (4) simplifies to:

|Br/D} > [(Br — Ad.)/ D] — 0(5).
Since the left hand side of this inequality is an integer, we have:
|Br/D} > (Br — Ad.)/D — 9(S).
Now, obviously, # > ||, hence:
Br/D > |Br/D| > (Br - Ad.)/D - 8(S),
Q.ED.

By the above lemma, each uniform dependence may be translated to a linear
constraint on the a and b’s coefficients. For more complicated dependences, one
has to resort to the Farkas algorithm [Fea92a], but the result is still a set of linear
constraints. One then selects a particular solution according to some ohjective
function. Of particular interest for fine grain scheduling are the minimum latency
schedules, in which one minimizes first the initiation interval a, and then the bg.

2.2 Resource constraints

In operation research, a resource is an entity which may or may not be used by
tasks or operations. To each resource is associated a constraint: namely, that the
execution intervals of two operations which use the same resource cannot overlap.
One may have resource classes. In that case, at any given time, the number
of active operations which use a given resource cannot exceed the number of
resources in the class. I will suppose here that all operations which are instances
of the same instruction use the same resource class. For simplicity, I will assume
that each operation uses only one resource. This restriction can be easily lifted
in case of need. In fact, in this work resource classes will simply be sets of
statements. If p is a resource class, S € p means that statement S uses a resource
from class p.

In the case of unique resources, the non overlap constraint may be translated
to simple inequalities on schedules. Suppose that S and T use the same resource.
If (S,) is scheduled before (T, j), then we must have:

6(T, j) 2 6(S,1) + 6(5),

while in the opposite situation the constraint is:
6(S, i) 2 6(T, 5) + o(T).

Since the two situations are exclusive, we may write the resource constraint as:

Vi, j:0(T,j)—0(S,2) > 8(S) V(S — 8(T,5) > o(T). (6)

Beside that, two operations which are instance of the same instruction necessarily
use the same resource and cannot overlap:

Viyjti< j = 10(5,0) — 0(5,7) > 8(S). (7)
This condition gives a very simple bound on a. Suppose a large number N of
iterations of the loop body are executed in time ¢. The total usage of resource p

will be:
t,a NY (S).
Sep
Suppose there are P, copies of p:

txNa< N Y 8(S)/P,,

Sep

from which one deduces the lower bound for a:

a>max » 0(S)/P,. (8)
If the initiation interval satisfies the above constraint, (7) is automatically sat-
isfied.

In actual processors, resource utilization may be a much more complicated
affair than the simplified scheme above. Pipelined resources, for instance, do not
appear to be busy for the whole duration of one operation. This is easily taken
care of by replacing 8(S) in (6) by another timing characteristics, the stalling
time of operation S, noted ¢(S). The resource constraint is now:

Vi, j:0(T,5) —0(S,1) > o(S)VO(S, i) — T, j) > o(T). (9)

An ordinary functional unit will have 0(S) = ¢(S), while a pipelined unit will
have o(S) < 9(9).

There may be links between resources, as for instance when one cannot use
a functional unit unless there is a free data path to it. That kind of constraint
must be handled heuristically.

The problem is more complicated if some resource class has more than one
element. A resource is in use at time ¢ if some statement S which uses it has
been initiated less than o(S) time units before ¢. If we identify a resource class
with the set of statements which use it, we may write the constraint for resource
p as:

Card {(S,1) | S € pAt—0(S) < 6(S,i) <t} < P,. (10)

3 Two Scheduling Algorithms

Basically, the scheduling method of [Fea92a] works by replacing (4), which rep-
resents a potentially infinite system of affine inequalities, by a finite set of con-
straints on the coefficients @ and bg. The first problem is to find a similar re-
duction for (9). Due to the non-convexity of (9), the result is non linear. Hence,
one cannot directly use linear programming to solve the problem. However, the
problem lends itself to a simple and efficient solution by searching the space of
possible values for a.

3.1 The singular resource case

For schedules of the form (2), the floor function in the expression of (6) may be
ignored:

Theorem 3. Let 7(S,i) = #EB< qnd 6(S,i) = |7(S,4)|. Then the two condi-
tions:

Vi, j: 0(T,5) — 6(S,1) > o(S) VO(S,i) — 6(T,5) > o(T). (11)

and

Vi, j:7(T,7) — 7(S,4) > o(S) V7(S,i) — (T, j) > o(T). (12)

are equivalent.

Proof. Suppose first that (12) is true. Let us be given two arbitrary integers :
and j. We may suppose, without loss of generality, that 7(S,7)—7(T, j) > 0. We
have, successively:

L7(T,5)) < (T, 5),
L7(T,)] + o(T) < (T, j) + o(T) < 7(5,9),

and, since the left hand side is an integer,
(T,)] +o(T) < [7(S,9)],
Q.ED.

Conversely, suppose that (12) is false for some values of 7 and j. Set z =7~ .
We have both: Az+Bs—By < o(T) and By —Bg—Az < 0(S) . Set B = Bp—Bg
for short. We may suppose that Az — B > 0. The other case is handled in a
symmetrical fashion. We have, for all j:

Since A and D are relatively prime, a j may be selected in such a way that
7(S,j + z) is an integer. We then have:

7S, j+2) =7(S,j+x) <7(T,j)+o(T),

[7(S.5 +2)] < [7(T,5)] +o(T),
(11) is also false, Q.E.D.

(S, j+a)—1(T,5) =

With the help of this result, the resource constraint above may be writien in
the form: As— B B_ A
VxEZ:—E—Za(T)V——_D——{Za(S).

D
Now A“”D_B is an affine function of ¢ whose zero is £o = B/A. For all values of
z > xp, the second inequality is certainly not verified. Hence, the first one must
be true, and a necessary and sufficient condition is that:

A(|B/A] +1) - B > Do(T).

The other case is handled similarly and gives: B — A |B/A| > Do(S). These
conditions may even be simplified by observing that, if they are true, then there
exists a unique integer ¢ such that:

A(g+1) = B> Do(T) A B — Ag > Do(S), (13)

As a consequence, the resource constraints in the singular case are given by
the following rule:
For all statements S and T' which use the same resource:

— Create a new integer variable ¢s7,
— Write the two constraints:

A(qST + 1) — Br +Bg > DO'(T), (14)
Br — Bs — Aqst > Do(S5).

These constraints are to be added to the dependence constraints and solved
for A and the Bg, A being the objective function to be minimized. Now the
constraints generated by (14) are clearly non linear. However, they become linear
if the value of A is known. Remember that we have one upper bound for a =
A/D which is simply the sum of the duration of all statements in the loop
body — the sequential upper bound — and two lower bounds. One of them, the
resource usage bound, is given by (8), and the other, the free bound, is obtained
simply by solving the scheduling problem with no resource constraints. The
maximum of these two bounds gives the parallel lower bound. The problem
is that, since a is a rational number, exploring its possible range of values is
not a finite process. As has been observed many times, the schedule (2) has
period D. D iterations of the loop body are scheduled in A clock cycles, giving
a mean activation interval of A/D. When generating code from such a schedule,
the loop body has to be replicated D times, which means that D cannot be
too large. In the singular resource case, the resource usage bound is an integer.
The free bound may be rational, but the actual value of its denominator is
no indication, because simplification may occur depending on the values of the
statement durations. A better guess may be obtained by observing that when
computing the free schedule, one has to solve a linear programming problem by
a process analogous to Gaussian elimination. By the familiar Cramer rule, the
denominator of the solution is the determinant of a submatrix of the problem
tableau, the basis matrix. The value of this determinant can be easily extracted

from the linear programming code, and is a good candidate for the unrolling
factor.

We have found in practice that the following heuristic gives satisfactory re-

sults :

1.

ha

Compute the free bound, the resource usage bound and the parallel lower
bound, I, which is their maximum.

D is set equal to the determinant of the basis matrix or to 1, depending
whether the parallel lower bound is the larger bound or not.

Set A= [D[I

Solve the complete scheduling problem for 4 and D.

. If the problem has no solution, increase A by 1 and start again at step 4.

Let us consider first a very simple example:

program A

doi=1,n

1 rl = a(i)-b(1)
c(i) = c(i-2) + r1
end do

Suppose that all operations are executed in unit time. Let 8(1,4) = ai+b1 and
8(2,1) = ai + b2 be the prototype schedules. There are two dependences:
— The first one is from (1,1) to (2,1) and gives the constraint: by — by > 1.
— The second one is from (2,{ — 2) to (2,¢) and gives: 2a > 1.
It 1s easy to see that the minimum latency solution is:

8(1,4) = i/2, 8(2,4) = i/2 +1.

Suppose now that both statements of the example are executed on the same
resource. This gives the following additional constraints:

a(q+1)+b1—b221, bg—bl—anI,

Since there are two statements in the loop and only one resource, we must
have @ > 2. An attempt to solve the remaining constraints with A=2, D=1
succeeds and gives:

8(1,4) = 2i, 8(2,i) = 2 + 1.

Since A has an upper and a lower bound, it may seem that a binary search
for the right value might be a good idea. However, experiment shows that the
solution is always near the lower bound. In that case, a simple linear search is
sufficient. Let us consider the following example:

program B

do 1i=1,n
r0 = a(i-2)/2.0
r1 = ro+a(i-3)
r2 = rf+a(i-4)
a(i) = ri*r2
end do

W =

10

Suppose that the available resources are an adder, a multiplier and a divider,
and that addition takes one cycle, multiplication and division taking two cycles.
Analysis of resource usage shows that the minimum initiation interval is two
cycles. Dependence analysis shows that statement 1 has to be executed first,
that 2 and 3 can be executed in parallel, and that 4 is to be executed last.
However, since the cycle is closed by a dependence from 4 at iteration ¢ to 1
at iteration i + 2, this gives a minimum rate of 5/2, and this is the parallel
lower bound. Hence, we set D = 2. The first value of A to be tested is 5, and
the integer programming algorithm finds that there is no solution. A is thus
increased to 6, and there is a solution. It is easy to see a posteriori that this
solution is optimal. In fact, since there is only one adder, statements 1 and 2
must be executed sequentially. Hence each iteration of the loop cannot take
less than 6 cycles. The resulting initiation interval is 6/2 = 3, indicating that
no unrolling is necessary.

Suppose now that the multiplication time is reduced o 1 cycle. The free bound
decreases to 2, but the determinant of the basis matrix is still 2. Hence, we
set) = 2 and A = 4. The first solution is found at the second iteration when
A = 5, giving an initiation interval of 5/2 with an unrolling factor of two. The
schedule is:

0(1,4) = 5/2i, 8(2,i) = 5/2 +2,
8(,3) = 5/2i + 3, 8(4,1) = 5/2% + 4.

To solve this problem, three calls to the integer programming algorithm PIP
where needed, which took 0.43 seconds on a low end workstation.

3.2 The many resource case

In the many resource case, the resource constraint is given by (10). In the singular
case, the scheduler has to guess the value of D and to search for the value of
A. The many resource case is evidently more complicated. Hence, I will suppose
that the algorithm structure is the same, namely that the problem is to test
whether, A and D being given, there is a possible assignment for the Bg which
meets all the constraints of the problem.

Here again, the first step is to get rid of the floor function. Suppose t is given,
and that we are trying to count how many instances of S are active at time i.
The iteration counter of the active instances is a positive integer such that:

Ai+ B
t—o(S) < |2 T8 | <y, (15)
L D
All terms in these inequalities are integers. Hence,they can be rewritten as:
Ai+ B
t—o(S)+1< %@—S— <t+1.

Nowit—0o(S)+1< lé-i—}és—_] andt—o(5)+1< &Eﬁs are equivalent. In one
direction, this is because |z| < z, and in the other, it results from the monotony
of the floor function.

11

For the other inequality, ﬁ“iDQi < t + 1 clearly imply HL‘E—B—'SJ <t+1. In
the reverse direction, H%—B—&J < t implies A—’%ﬁs- <t + 1 by definition.
As a consequence, the iterations of S which are active at time ¢ are solutions
of:
Dt — Do(S)+ D < Ai+Bs <Dt + D.

The problem is to count the solutions of these inequalities with ¢ as the unknown
as a function of ¢.

Introducing an “excess” variable z, the constraints may be transformed into
an equation:

Ai+Bs=Di+D—-1-z, (16)
provided that z satisfies 0 < & < Da(S5). If Ng(t,) is the count of solutions of
(16) for given ¢ and z, then the number of active iterations at time ¢ is:

81x925

LDo(d)-1

Ns(t)= > Ns(tz).
z=0

The first observation is that equation (16) has at most one solution, which is
given by:

. _Di+D—-1-2z-Bg

= n ,

To be a legitimate iteration number, this solution has to be a positive integer.
i is obviously positive for large enough ¢. The effect of ignoring the positivity
condition, is to overestimate the resource usage for the prologue of the loop nest.
It is customary in the field to ignore this factor by considering only very long
loops, and this is the best one can do at compile time, since, for most loops,
the iteration count is a variable. It may be possible to do better under user
guidance: for instance, to inhibit software pipelining when the user knows that
the iteration count will be small.
The integrity condition is simply:

Dit+D—-1—z—-Bs=0 (modA). (17)

This has to be evaluated for all values of £. It is clear, however, that the condition
depends only on ¢ mod A. It thus has to be tested for ¢t € [0, A — 1]. Another
point is that the correspondance from ¢ to Dt mod A is bijective, since A and
D are relatively prime. As a consequence, one may introduce a new variable
t' = Dt mod A,0 <# < A—1. The number of solutions of (16) may be written:

Ns(t,z) = 6((t' + D — 1 -z — Bg) mod A),
where 6 is a variant of the Kronecker symbol:

8(0) =1, 6(i)=0,i#0.

