Analysis of Geophysical Potential Fields: A Digital Signal by P. S. Naidu

By P. S. Naidu

While a few worthy info is hidden at the back of a mass of undesirable info we regularly hotel to info processing utilized in its wide experience or in particular to sign processing while the priceless details is a waveform. In geophysical surveys, specifically in aeromagnetic and gravity surveys, from the measured box it is usually tough to claim a lot approximately anybody particular goal except it's as regards to the outside and good remoted from the remainder. The electronic sign processing method may allow us to deliver out the underlying version of the resource, that's, the geological constitution. the various instruments of dsp reminiscent of electronic filtering, spectrum estimation, inversion, etc., have discovered broad functions in aeromagnetic and gravity map research. There are different rising purposes of dsp within the quarter of inverse filtering, 3 dimensional visualization, etc.The objective of this e-book is to deliver a variety of instruments of dsp to the geophysical group, specifically, to people who are getting into the geophysical occupation. additionally the working towards geophysicists, interested by the aeromagnetic and gravity information research, utilizing the commercially to be had software program programs, will locate this ebook worthy in answering their questions about "why and how?". it truly is was hoping that this type of heritage could let the training geophysicists to understand the clients and obstacles of the dsp in extracting helpful info from the aptitude box maps. the themes lined are: power box signs and types, electronic filtering in dimensions, spectrum estimation and alertness, parameter estimation with blunders bounds"

Show description

By P. S. Naidu

While a few worthy info is hidden at the back of a mass of undesirable info we regularly hotel to info processing utilized in its wide experience or in particular to sign processing while the priceless details is a waveform. In geophysical surveys, specifically in aeromagnetic and gravity surveys, from the measured box it is usually tough to claim a lot approximately anybody particular goal except it's as regards to the outside and good remoted from the remainder. The electronic sign processing method may allow us to deliver out the underlying version of the resource, that's, the geological constitution. the various instruments of dsp reminiscent of electronic filtering, spectrum estimation, inversion, etc., have discovered broad functions in aeromagnetic and gravity map research. There are different rising purposes of dsp within the quarter of inverse filtering, 3 dimensional visualization, etc.The objective of this e-book is to deliver a variety of instruments of dsp to the geophysical group, specifically, to people who are getting into the geophysical occupation. additionally the working towards geophysicists, interested by the aeromagnetic and gravity information research, utilizing the commercially to be had software program programs, will locate this ebook worthy in answering their questions about "why and how?". it truly is was hoping that this type of heritage could let the training geophysicists to understand the clients and obstacles of the dsp in extracting helpful info from the aptitude box maps. the themes lined are: power box signs and types, electronic filtering in dimensions, spectrum estimation and alertness, parameter estimation with blunders bounds"

Show description

Read or Download Analysis of Geophysical Potential Fields: A Digital Signal Processing Approach PDF

Best mathematics books

Multiparameter Eigenvalue Problems and Expansion Theorems

This e-book offers a self-contained remedy of 2 of the most difficulties of multiparameter spectral conception: the lifestyles of eigenvalues and the growth in sequence of eigenfunctions. the consequences are first got in summary Hilbert areas after which utilized to necessary operators and differential operators.

Séminaire Bourbaki, Vol. 1, 1948-1951, Exp. 1-49

Desk of Contents

* 1 Henri Cartan Les travaux de Koszul, I (Lie algebra cohomology)
* 2 Claude Chabauty Le théorème de Minkowski-Hlawka (Minkowski-Hlawka theorem)
* three Claude Chevalley L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, I, d'après Weil (local zeta-function)
* four Roger Godement Groupe complexe unimodulaire, I : Les représentations unitaires irréductibles du groupe complexe unimodulaire, d'après Gelfand et Neumark (representation concept of the complicated distinct linear group)
* five Léo Kaloujnine Sur los angeles constitution de p-groupes de Sylow des groupes symétriques finis et de quelques généralisations infinies de ces groupes (Sylow theorems, symmetric teams, countless workforce theory)
* 6. Pierre Samuel l. a. théorie des correspondances birationnelles selon Zariski (birational geometry)
* 7 Jean Braconnier Sur les suites de composition d'un groupe et los angeles travel des groupes d'automorphismes d'un groupe fini, d'après H. Wielandt (finite groups)
* eight Henri Cartan, Les travaux de Koszul, II (see 1)
* nine Claude Chevalley, L'hypothèse de Riemann pour les groupes de fonctions algébriques de caractéristique p, II,, d'après Weil (see 3)
* 10 Luc Gauthier, Théorie des correspondances birationnelles selon Zariski (see 6)
* eleven Laurent Schwartz, Sur un mémoire de Petrowsky : "Über das Cauchysche challenge für ein procedure linearer partieller Differentialgleichungen im gebiete nichtanalytischen Funktionen" (partial differential equations)
* 12 Henri Cartan, Les travaux de Koszul, III (see 1)
* thirteen Roger Godement, Groupe complexe unimodulaire, II : los angeles transformation de Fourier dans le groupe complexe unimodulaire à deux variables, d'après Gelfand et Neumark (see 4)
* 14 Marc Krasner, Les travaux récents de R. Brauer en théorie des groupes (finite groups)
* 15 Laurent Schwartz, Sur un deuxième mémoire de Petrowsky : "Über das Cauchysche challenge für method von partiellen Differentialgleichungen" (see 11)
* sixteen André Weil Théorèmes fondamentaux de los angeles théorie des fonctions thêta, d'après des mémoires de Poincaré et Frobenius (theta functions)
* 17 André Blanchard, Groupes algébriques et équations différentielles linéaires, d'après E. Kolchin (differential Galois theory)
* 18 Jean Dieudonné, Géométrie des espaces algébriques homogènes, d'après W. L. Chow (algebraic geometry)
* 19 Roger Godement, Sommes keeps d'espaces de Hilbert, I (functional research, direct integrals)
* 20 Charles Pisot, Démonstration élémentaire du théorème des nombres premiers, d'après Selberg et Erdös (prime quantity theorem)
* 21 Georges Reeb, Propriétés des trajectoires de certains systèmes dynamiques (dynamical systems)
* 22 Pierre Samuel, Anneaux locaux ; creation à l. a. géométrie algébrique (local rings)
* 23 Marie-Hélène Schwartz, Compte-rendu de travaux de M. Heins sur diverses majorations de los angeles croissance des fonctions analytiques et sous-harmoniques (complex research, subharmonic functions)
* 24 Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable (connections on fiber bundles)
* 25 Roger Godement, Sommes keeps d'espaces de Hilbert, II (see 19)
* 26 Laurent Schwartz, Sur un mémoire de okay. Kodaira : "Harmonic fields in riemannian manifolds (generalized power theory)", I (Hodge theory)
* 27 Jean-Pierre Serre, Extensions de groupes localement compacts, d'après Iwasawa et Gleason (locally compact groups)
* 28 René Thom, Les géodésiques dans les variétés à courbure négative, d'après Hopf (geodesics)
* 29 Armand Borel, Groupes localement compacts, d'après Iwasawa et Gleason (see 27)
* 30 Jacques Dixmier, Facteurs : type, measurement, hint (von Neumann algebras)
* 31 Jean-Louis Koszul, Algèbres de Jordan (Jordan algebras)
* 32 Laurent Schwartz, Sur un mémoire de ok. Kodaira : "Harmonic fields in riemannian manifolds (generalized strength theory)", II (see 26)
* 33 Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, d'après Cartan, Iwasawa et Mostow (maximal compact subgroups)
* 34 Henri Cartan, Espaces fibrés analytiques complexes (analytic geometry, fiber bundles)
* 35 Charles Ehresmann, Sur les variétés presque complexes (almost-complex manifolds)
* 36 Samuel Eilenberg, Exposition des théories de Morse et Lusternick-Schnirelmann (Morse concept, Lyusternik-Schnirelmann category)
* 37 Luc Gauthier, Quelques variétés usuelles en géométrie algébrique (algebraic geometry)
* 38 Jean-Louis Koszul, Cohomologie des espaces fibrés différentiables et connexions (Chern-Weil theory)
* 39 Jean Delsarte, Nombre de strategies des équations polynomiales sur un corps fini, d'après A. Weil (Weil conjectures)
* forty Jacques Dixmier, Anneaux d'opérateurs et représentations des groupes (operator algebras, illustration theory)
* forty-one Roger Godement, Théorie des caractères dans les groupes unimodulaires (unimodular groups)
* forty two Pierre Samuel, Théorie du corps de periods neighborhood selon G. P. Hochschild (local category box theory)
* forty three Laurent Schwartz, Les théorèmes de Whitney sur les fonctions différentiables (singularity theory)
* forty four Jean-Pierre Serre, Groupes d'homotopie (homotopy groups)
* forty five Armand Borel, Cohomologie des espaces homogènes (cohomology of homogeneous areas of Lie groups)
* forty six Samuel Eilenberg, Foncteurs de modules et leurs satellites, d'après Cartan et Eilenberg (homological algebra)
* forty seven Marc Krasner, Généralisations non-abéliennes de l. a. théorie locale des corps de sessions (local fields)
* forty eight Jean Leray, l. a. résolution des problèmes de Cauchy et de Dirichlet au moyen du calcul symbolique et des projections orthogonales et obliques (Dirichlet difficulties and Cauchy difficulties for partial differential equations, symbolic calculus)
* forty nine Pierre Samuel, Sections hyperplanes des variétés normales, d'après A. Seidenberg (algebraic geometry, hyperplane sections, basic type)

Additional info for Analysis of Geophysical Potential Fields: A Digital Signal Processing Approach

Example text

19]. The frequency domain approach for the potential field signal has been applied to more complex 3D source models such as a polyhedron with triangular facets [20]. Indeed, a very complex source model may be decomposed into many simple prisms and later linearly combined to form the closest approximation to the actual model. 5. Stochastic models I: r a n d o m interface The central theme in the current section and in the following section is that the potential fields are caused by stochastic sources of two types, namely, a random interface separating two homogeneous media; for example, sedimentary rocks overlying a granitic basement and a horizontal layer of finite thickness wherein the density or magnetization is varying randomly.

It must be pointed out that the singularities are encountered only when the external potential field is analytically continued into the region occupied by the source. The analy- 27 Potential field in source free space tically continued potential found inside the body is not equal to the true potential found inside the body. The importance of the singularities lies in the fact that these can be uniquely determined from the observed field. They are often closely related to the shape parameters of the source.

The potential field is computed directly in the frequency domain. 3. Uniform vertical prism As an example of a complex signal source let us consider a vertical prismatic body of uniform density or susceptibility variation. 8). 47) On substituting Eq. 47) in Eq. 48) The last integral in Eq. 48) can be evaluated by referring to tables of definite integrals( see, for example, Ref. [16, p. 49) s This expression is derived in Ref. [ 17] and also by Bhattacharya [ 18] who used an approach of direct Fourier transformation of the spatial signal.

Download PDF sample

Rated 4.83 of 5 – based on 47 votes